上海鹰衡称重设备有限公司为了适应动态地磅称重精度的要求,本文通过分析干扰因素,提取出真实的轴重信号,将汽车质量信号分成两部分进 行分析建模,应用卡尔曼滤波作为信息处理器,得到较准确的真实信号。在实际测试中通过加载砝码,得到了较准确的实验数据,与 其AD值的平均值进行对比。结果表明:该方法提高了动态称重的精度,实现了动态精度在国标范围中。
0.引言
为适应现代自动化管理,动态汽车衡已经广泛应用于高速 公路超限检测系统和计重收费系统,高精度、高速度是汽车动 态称重系统的迫切需求,由于路面不平和车辆振动等因素使得 采集到的重量信号中掺杂了复杂的干扰信号,在外界随机干 扰因素作用下如何准确测量真实轴重信号,就成了汽车动态 称重系统的技术难点和关键。
汽车驶入秤台时,由于汽车自身因素以及路面的不平整度 的影响,使得汽车信号受到各种干扰因素。依据汽车动力学,可以得到其数学模型为一个单自由度二阶线性系统。本文通 过分析干扰因素,提取出真实的轴重信号,结合卡尔曼滤波将 信号加以处理,得到较准确的真实信号。
测试系统及原理
结合地磅模型和汽车驶入秤台的测量数据后,我们得出 理想状态下汽车在秤台上产生的波形是一个梯形波。如图1所示,汽车均速驶入秤台时为一直线,到达梯形波底则是汽车 在上秤台的过程,中间的平稳直线是汽车完全作用与汽车所产 生的波形,同理另一个腰是汽车在下秤台的过程。
我们所讨论的汽车质量信号是一个多干扰因素的复杂信 号,将汽车的动态车道线作为跟踪目标,车道线具有连续性,动 态地磅的传感器输出的信号主要由汽车质量真实信号 和噪声信号组成。将汽车质量信号进行分析:可以看作有两部 分组成,即一部分由已知的运动方程正确地预测出来,即为线 性随机微分系统,另外一部分可以看作是均值为零的随机分 量,即为高斯白噪声。对于满足上面的条件(线性随机微分系 统,过程和测量都是高斯白噪声),卡尔曼滤波器是Zui优的信息处理器。
2.基于卡尔曼滤波的动态地磅建模
结合地磅模型和汽车驶入秤台的测量数据后,我们得出 理想状态下汽车在秤台上产生的波形是一个梯形波。均速驶 入秤台时为一直线,到达梯形波底则是汽车在上秤台的过程, 中间的平稳直线是汽车完全作用与汽车所产生的波形,同理另 一个腰是汽车在下秤台的过程。下一章将具体分析此过程的 实际波形。